With your help we can maintain our CFD.NINJA website and create more content related to Computational Fluid Dynamics (CFD).

Thank you so much!

CFD.NINJA – ANSYS CFD

CFD.NINJA is a group founded in 2014, since then we have been dedicated to the research and dissemination of topics related to Computational Fluid Dynamics (CFD) for which we use various CFD simulation software such as ANSYS FLUENT, ANSYS CFX, ANSYS MESHING, ANSYS ICEM CFD, OpenFoam, DesignModeler, SpaceClaim, Rocky DEM, Autodesk Inventor, Ensight, etc.
We invite you to subscribe to our youtube channel, Facebook page, Twitter and Instagram where we share monthly ANSYS CFD tutorials. Eventually, we do a giveaway for CFD books and gift cards where our subscribers participate.

 

 

More than 150 Free Tutorials using Ansys Fluent, Ansys CFX, Ansys Meshing, DesignModeler, SpaceClaim, Autodesk Inventor, ICEM CFD.

CFD.NINJA Bookstore

CFD.NINJA Tutorials

We have a large number of tutorials that we have developed over several years and we make them available to you. In many of them, you can download files, geometries, and meshes. Soon we will be uploading more tutorials for experts and beginners of ANSYS CFD. We hope you can share this website with your friends and colleagues.

Source: Ansys
Computational fluid dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. But serious CFD, the kind that provides insights to help you optimize your designs, can be out of reach unless you choose your software carefully. To get serious CFD results, you need serious software. Ansys CFD goes beyond qualitative results to deliver accurate quantitative predictions of fluid interactions and trade-offs. These insights reveal unexpected opportunities for your product — opportunities that even experienced engineering analysts can miss.

Ansys Fluent Tutorials

Source: Ansys

Fluent software contains the broad, physical modeling capabilities needed to model flow, turbulence, heat transfer and reactions for industrial applications. These range from air flow over an aircraft wing to combustion in a furnace, from bubble columns to oil platforms, from blood flow to semiconductor manufacturing and from clean room design to wastewater treatment plants. Fluent spans an expansive range, including special models, with capabilities to model in-cylinder combustion, aero-acoustics, turbomachinery and multiphase systems.

Ansys Fluent – Scaling the Mesh

Internally, ANSYS FLUENT stores the computational mesh in meters, the SI unit of length. When mesh information is read into the solver, it is assumed that the mesh was generated in units of meters. If your mesh was created using a different unit of length (inches, feet, centimeters, etc.),

Ansys Fluent – Fluidized Bed

A fluidized bed is a physical phenomenon occurring when a quantity of a solid particulate substance (usually present in a holding vessel) is placed under appropriate conditions to cause a solid/fluid mixture to behave as a fluid.

Ansys Fluent – Compilate UDF / Solution to “nmake” error

The general procedure for compiling a UDF source file and building a shared library for the resulting objects, and loading the compiled UDF library into ANSYS FLUENT using the graphical user interface (GUI) is as follows.

Ansys Fluent Tutorial | Solidification

In this tutorial you will learn how to simulate a solidification case using Ansys Fluent. You can use Ansys student version.

Ansys CFX Tutorials

Source: Ansys

Ansys CFX is a high-performance computational fluid dynamics (CFD) software tool that delivers reliable and accurate solutions quickly and robustly across a wide range of CFD and multiphysics applications. CFX is recognized for its outstanding accuracy, robustness and speed when simulating turbomachinery, such as pumps, fans, compressors and gas and hydraulic turbines.

Ansys CFX – Heat Transfer Solid/Solid

Source: brighthubengineering Heat transfer is the process of transfer of heat from high temperature reservoir to low temperature reservoir. In terms of the thermodynamic system, heat transfer is the movement of heat across the boundary of the system due to temperature...

Ansys CFX – NACA Airfoil 4412

During the late 1920s and into the 1930s, the NACA developed a series of thoroughly tested airfoils and devised a numerical designation for each airfoil — a four digit number that represented the airfoil section’s critical geometric properties.

Ansys CFX – Heat Transfer Fluid/Solid

Heat transfer is the process of transfer of heat from high temperature reservoir to low temperature reservoir. In terms of the thermodynamic system, heat transfer is the movement of heat across the boundary of the system due to temperature difference between the system and the surroundings.

Ansys CFX – How to add new material?

By default, your local materials list will include a single fluid material (air) and a single solid material (aluminum). If the fluid involved in your problem is air, you can use the default properties for air or modify the properties.

Ansys CFX – NACA 4412 (Structured Mesh)

Ansys CFX – NACA 4412 (Structured Mesh)

Source: NASA The NACA four-digit wing sections define the profile by:[1] First digit describing maximum camber as percentage of the chord. Second digit describing the distance of maximum camber from the airfoil leading edge in tenths of the chord. Last two digits...

OpenFOAM vs ANSYS CFX

OpenFOAM vs ANSYS CFX

Source: CFD Direct OpenFOAM is the free, open source CFD software developed primarily by OpenCFD Ltd since 2004. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of...

Ansys Meshing Tutorials

Source: Ansys

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation. Furthermore, since meshing typically consumes a significant portion of the time it takes to get simulation results, the better and more automated the meshing tools, the faster and more accurate the solution.

Ansys provides general purpose, high-performance, automated, intelligent meshing software which produces the most appropriate mesh for accurate, efficient multiphysics solutions — from easy, automatic meshing to highly crafted mesh. Methods available cover the meshing spectrum of high-order to linear elements and fast tetrahedral and polyhedral to high-quality hexahedral and Mosaic. Smart defaults are built into the software to make meshing a painless and intuitive task delivering the required resolution to capture solution gradients properly for dependable results.

Ansys Meshing – Local Sizing

The Sizing options provide greater control over the following properties:
Mesh growth (transition) between small and large sizes based on a specified growth rate

Ansys Meshing – Sphere of Influence

The Sphere of Influence option is available in the Type field after you select an entity such as a body, face, edge, or vertex.

Ansys Meshing – Keyframe Animation

You can make animations based on keyframes. Keyframes define the start and endpoints of each section of animation.

Ansys Meshing – Sizing

For solid models, meshing technologies from ANSYS provide robust, well-shaped quadratic tetrahedral meshing on even the most complicated geometries.

Ansys Meshing | Inflation

Ansys Meshing | Inflation

Source: Ansys You can set the Use Automatic Inflation control so that inflation boundaries are selected automatically depending on whether or not they are members of Named Selections groups. The following options are available: None Program Controlled All Faces in...

Ansys Meshing – Keyframe Animation

Ansys Meshing – Keyframe Animation

Source: Ansys You can make animations based on keyframes. Keyframes define the start and endpoints of each section of animation. Keyframes are linked together by drawing a number of intermediate frames, the number of which is set by the # of Frames field in the...

Ansys DesignModeler Tutorials

Ansys DesignModeler – Analysis Tools

The analysis tools consist of a set of functions which allow you to measure the distance between any two entities, obtain model entity information, and detect model faults. The function supports:

Ansys DesignModeler – Imprint Face

Similar to Slice, Imprint Faces imprints curves onto the faces of active bodies in the model. The bodies themselves are not split into multiple pieces. It is available whenever active bodies are present.

Ansys DesignModeler – Enclosure

The Enclosure feature is a tool used to enclose the bodies of a model so that the material enclosing the bodies can be assigned to something such as a gas or fluid in the ANSYS Mechanical application.

Ansys DesignModeler – NACA Airfoil

The NACA airfoils are airfoil shapes for aircraft wings developed by the National Advisory Committee for Aeronautics (NACA).

Pin It on Pinterest

Shares
Advertisment ad adsense adlogger