With your help we can maintain our CFD.NINJA website and create more content related to Computational Fluid Dynamics (CFD).

Thank you so much!

CFD.NINJA – ANSYS CFD

CFD.NINJA is a group founded in 2014, since then we have been dedicated to the research and dissemination of topics related to Computational Fluid Dynamics (CFD) for which we use various CFD simulation software such as ANSYS FLUENT, ANSYS CFX, ANSYS MESHING, ANSYS ICEM CFD, OpenFoam, DesignModeler, SpaceClaim, Rocky DEM, Autodesk Inventor, Ensight, etc.
We invite you to subscribe to our youtube channel, Facebook page, Twitter and Instagram where we share monthly ANSYS CFD tutorials. Eventually, we do a giveaway for CFD books and gift cards where our subscribers participate.

 

 

More than 150 Free Tutorials using Ansys Fluent, Ansys CFX, Ansys Meshing, DesignModeler, SpaceClaim, Autodesk Inventor, ICEM CFD.

CFD.NINJA Bookstore

CFD.NINJA Tutorials

We have a large number of tutorials that we have developed over several years and we make them available to you. In many of them, you can download files, geometries, and meshes. Soon we will be uploading more tutorials for experts and beginners of ANSYS CFD. We hope you can share this website with your friends and colleagues.

Source: Ansys
Computational fluid dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. But serious CFD, the kind that provides insights to help you optimize your designs, can be out of reach unless you choose your software carefully. To get serious CFD results, you need serious software. Ansys CFD goes beyond qualitative results to deliver accurate quantitative predictions of fluid interactions and trade-offs. These insights reveal unexpected opportunities for your product — opportunities that even experienced engineering analysts can miss.

Ansys Fluent Tutorials

Source: Ansys

Fluent software contains the broad, physical modeling capabilities needed to model flow, turbulence, heat transfer and reactions for industrial applications. These range from air flow over an aircraft wing to combustion in a furnace, from bubble columns to oil platforms, from blood flow to semiconductor manufacturing and from clean room design to wastewater treatment plants. Fluent spans an expansive range, including special models, with capabilities to model in-cylinder combustion, aero-acoustics, turbomachinery and multiphase systems.

Ansys Fluent – How to add new material?

By default, your local materials list will include a single fluid material (air) and a single solid material (aluminum). If the fluid involved in your problem is air, you can use the default properties for air or modify the properties.

Ansys Fluent Tutorial | Melting

In this tutorial you will learn how to simulate a melting case using Ansys Fluent. You can do this tutorial with Ansys student version.

Ansys Fluent – Axial Fan

An axial fan is a type of fan that causes gas to flow through it in an axial direction, parallel to the shaft about which the blades rotate. The flow is axial at entry and exit. The fan is designed to produce a pressure difference, and hence force, to cause a flow...

Ansys Fluent – Compilate UDF / Solution to “nmake” error

The general procedure for compiling a UDF source file and building a shared library for the resulting objects, and loading the compiled UDF library into ANSYS FLUENT using the graphical user interface (GUI) is as follows.

Ansys CFX Tutorials

Source: Ansys

Ansys CFX is a high-performance computational fluid dynamics (CFD) software tool that delivers reliable and accurate solutions quickly and robustly across a wide range of CFD and multiphysics applications. CFX is recognized for its outstanding accuracy, robustness and speed when simulating turbomachinery, such as pumps, fans, compressors and gas and hydraulic turbines.

Ansys CFX – NACA 0012 with Angle of Attack (AOA)

During the late 1920s and into the 1930s, the NACA developed a series of thoroughly tested airfoils and devised a numerical designation for each airfoil — a four digit number that represented the airfoil section’s critical geometric properties.

Ansys CFX – Flow around a Cylinder / Parameters DesignPoint (DP)

External flows past objects have been studied extensively because of their many practical applications. For example, airfoils are made into streamline shapes in order to increase the lifts, and at the same time, reducing the aerodynamic drags exerted on the wings.

Ansys CFX – NACA Airfoil 4412

During the late 1920s and into the 1930s, the NACA developed a series of thoroughly tested airfoils and devised a numerical designation for each airfoil — a four digit number that represented the airfoil section’s critical geometric properties.

OpenFOAM vs ANSYS CFX

OpenFOAM is the free, open source CFD software developed primarily by OpenCFD Ltd since 2004. It has a large user base across most areas of engineering and science, from both commercial and academic organisations.

Ansys CFX – NACA 4412 (Structured Mesh)

Ansys CFX – NACA 4412 (Structured Mesh)

Source: NASA The NACA four-digit wing sections define the profile by:[1] First digit describing maximum camber as percentage of the chord. Second digit describing the distance of maximum camber from the airfoil leading edge in tenths of the chord. Last two digits...

OpenFOAM vs ANSYS CFX

OpenFOAM vs ANSYS CFX

Source: CFD Direct OpenFOAM is the free, open source CFD software developed primarily by OpenCFD Ltd since 2004. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of...

Ansys Meshing Tutorials

Source: Ansys

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation. Furthermore, since meshing typically consumes a significant portion of the time it takes to get simulation results, the better and more automated the meshing tools, the faster and more accurate the solution.

Ansys provides general purpose, high-performance, automated, intelligent meshing software which produces the most appropriate mesh for accurate, efficient multiphysics solutions — from easy, automatic meshing to highly crafted mesh. Methods available cover the meshing spectrum of high-order to linear elements and fast tetrahedral and polyhedral to high-quality hexahedral and Mosaic. Smart defaults are built into the software to make meshing a painless and intuitive task delivering the required resolution to capture solution gradients properly for dependable results.

Ansys Meshing – Refinement

Refinement controls specify the maximum number of times you want an initial mesh to be refined.

Ansys Meshing – Multizone + Inflation + Face Meshing

You can set the Use Automatic Inflation control so that inflation boundaries are selected automatically depending on whether or not they are members of Named Selections groups.

Ansys Meshing – Method

By default, the application uses the Automatic Method control, which attempts to use sweeping for solid models and quadrilateral element generation for surface body models.

Ansys Meshing – Body of Influence

The Body of Influence option is available in the Type field if you selected a body and Use Adaptive Sizing is set to No.

Ansys Meshing | Inflation

Ansys Meshing | Inflation

Source: Ansys You can set the Use Automatic Inflation control so that inflation boundaries are selected automatically depending on whether or not they are members of Named Selections groups. The following options are available: None Program Controlled All Faces in...

Ansys Meshing – Keyframe Animation

Ansys Meshing – Keyframe Animation

Source: Ansys You can make animations based on keyframes. Keyframes define the start and endpoints of each section of animation. Keyframes are linked together by drawing a number of intermediate frames, the number of which is set by the # of Frames field in the...

Ansys Meshing – Match Control

Ansys Meshing – Match Control

Source: Ansys The Match Control matches the mesh on two or more faces or edges in a model. The Meshing application provides two types of match controls—cyclic and arbitrary. The Match Control is supported for the following mesh methods: Volume Meshing: Sweep Patch...

Ansys DesignModeler Tutorials

Ansys DesignModeler – Projection vs Imprint Face

The Projection feature allows you to project points on edges/faces and edges on faces/bodies. This feature can be executed on both frozen and active bodies.

Ansys DesignModeler – Edge Split

The Split Edges feature allows for the splitting of edges (including Line body edges) into two or more pieces. The edges selected for the operation can come from either active or frozen bodies.

Ansys DesignModeler – Import from BladeGen to DesignModeler

Ansys BladeModeler software is a specialized, easy-to-use tool for the rapid 3D design of rotating machinery components. Ansys BladeModeler is used to design axial, mixed-flow and radial blade components in applications such as pumps, compressors, fans, blowers, turbines, expanders, turbochargers, inducers and more.

Ansys DesignModeler – Pattern & Array

The Pattern feature allows you to create copies of faces and bodies in three patterns:
Linear: a direction and offset distance is required.
Circular: a rotation axis and angle are required.

Stay Up to Date With The Latest News & Updates

Help us keep growing

CFD.NINJA is financed with its own resources, if you want to support us we will be grateful.

Join Our Newsletter

Subscribe to receive emails with detailed information related to the CFD.

Follow Us

Subscribe to our social networks to receive notifications about our new tutorials

Pin It on Pinterest

Shares