With your help we can maintain our CFD.NINJA website and create more content related to Computational Fluid Dynamics (CFD).

Thank you so much!

CFD.NINJA – ANSYS CFD

CFD.NINJA is a group founded in 2014, since then we have been dedicated to the research and dissemination of topics related to Computational Fluid Dynamics (CFD) for which we use various CFD simulation software such as ANSYS FLUENT, ANSYS CFX, ANSYS MESHING, ANSYS ICEM CFD, OpenFoam, DesignModeler, SpaceClaim, Rocky DEM, Autodesk Inventor, Ensight, etc.
We invite you to subscribe to our youtube channel, Facebook page, Twitter and Instagram where we share monthly ANSYS CFD tutorials. Eventually, we do a giveaway for CFD books and gift cards where our subscribers participate.

 

 

More than 150 Free Tutorials using Ansys Fluent, Ansys CFX, Ansys Meshing, DesignModeler, SpaceClaim, Autodesk Inventor, ICEM CFD.

CFD.NINJA Bookstore

CFD.NINJA Tutorials

We have a large number of tutorials that we have developed over several years and we make them available to you. In many of them, you can download files, geometries, and meshes. Soon we will be uploading more tutorials for experts and beginners of ANSYS CFD. We hope you can share this website with your friends and colleagues.

Source: Ansys
Computational fluid dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. But serious CFD, the kind that provides insights to help you optimize your designs, can be out of reach unless you choose your software carefully. To get serious CFD results, you need serious software. Ansys CFD goes beyond qualitative results to deliver accurate quantitative predictions of fluid interactions and trade-offs. These insights reveal unexpected opportunities for your product — opportunities that even experienced engineering analysts can miss.

Ansys Fluent Tutorials

Source: Ansys

Fluent software contains the broad, physical modeling capabilities needed to model flow, turbulence, heat transfer and reactions for industrial applications. These range from air flow over an aircraft wing to combustion in a furnace, from bubble columns to oil platforms, from blood flow to semiconductor manufacturing and from clean room design to wastewater treatment plants. Fluent spans an expansive range, including special models, with capabilities to model in-cylinder combustion, aero-acoustics, turbomachinery and multiphase systems.

Ansys Fluent – Centrifugal Pump (Impeller)

A centrifugal pump is a mechanical device designed to move a fluid by means of the transfer of rotational energy from one or more driven rotors, called impellers. Fluid enters the rapidly rotating impeller along its axis and is cast out…

Ansys Fluent – NACA Airfoil 4412

During the late 1920s and into the 1930s, the NACA developed a series of thoroughly tested airfoils and devised a numerical designation for each airfoil — a four digit number that represented the airfoil section’s critical geometric properties.

Ansys Fluent – Centrifugal Pump

Source: MichaelSmith A centrifugal pump is a mechanical device designed to move a fluid by means of the transfer of rotational energy from one or more driven rotors, called impellers.  Fluid enters the rapidly rotating impeller along its axis and is cast out by...

Ansys Fluent – UDF (User-Defined Function) Temperature Profile

A user-defined function, or UDF, is a function that you program that can be dynamically loaded with the ANSYS FLUENT solver to enhance the standard features of the code. For example, you can use a UDF to define your own boundary conditions, material properties, and...

Ansys CFX Tutorials

Source: Ansys

Ansys CFX is a high-performance computational fluid dynamics (CFD) software tool that delivers reliable and accurate solutions quickly and robustly across a wide range of CFD and multiphysics applications. CFX is recognized for its outstanding accuracy, robustness and speed when simulating turbomachinery, such as pumps, fans, compressors and gas and hydraulic turbines.

Ansys CFX – Import Pressure to Ansys Mechanical (FSI)

Fluid-structure interaction (FSI) is the multiphysics study of how fluids and structures interact. The fluid flow may exert pressure and/or thermal loads on the structure. These loads may cause structural deformation significant enough to change the fluid flow itself.

Ansys CFX – Free Surface 3D

Free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids, for example, liquid water and the air in the Earth’s atmosphere.

Ansys CFX – Flow around a Cylinder / Parameters DesignPoint (DP)

External flows past objects have been studied extensively because of their many practical applications. For example, airfoils are made into streamline shapes in order to increase the lifts, and at the same time, reducing the aerodynamic drags exerted on the wings.

Ansys CFX – CD Nozzle (De Laval Nozzle)

A nozzle is a relatively simple device, just a specially shaped tube through which hot gases flow. Ramjets and rockets typically use a fixed convergent section followed by a fixed divergent section for the design of the nozzle. This nozzle configuration is called a convergent-divergent,

Ansys CFX – NACA 4412 (Structured Mesh)

Ansys CFX – NACA 4412 (Structured Mesh)

Source: NASA The NACA four-digit wing sections define the profile by:[1] First digit describing maximum camber as percentage of the chord. Second digit describing the distance of maximum camber from the airfoil leading edge in tenths of the chord. Last two digits...

OpenFOAM vs ANSYS CFX

OpenFOAM vs ANSYS CFX

Source: CFD Direct OpenFOAM is the free, open source CFD software developed primarily by OpenCFD Ltd since 2004. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of...

Ansys Meshing Tutorials

Source: Ansys

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation. Furthermore, since meshing typically consumes a significant portion of the time it takes to get simulation results, the better and more automated the meshing tools, the faster and more accurate the solution.

Ansys provides general purpose, high-performance, automated, intelligent meshing software which produces the most appropriate mesh for accurate, efficient multiphysics solutions — from easy, automatic meshing to highly crafted mesh. Methods available cover the meshing spectrum of high-order to linear elements and fast tetrahedral and polyhedral to high-quality hexahedral and Mosaic. Smart defaults are built into the software to make meshing a painless and intuitive task delivering the required resolution to capture solution gradients properly for dependable results.

Ansys Meshing – Mapped & Match Control

The Match Control matches the mesh on two or more faces or edges in a model. The Meshing application provides two types of match controls—cyclic and arbitrary.

Ansys Meshing – Sizing (SOFT / HARD)

If your sizing controls are scoped to either the source or target face, the mesher will transfer the size control to the opposite face. If you have a size control on both faces, the size on one of the faces will be used. That face is automatically determined by the software.

Ansys Meshing – Multizone + Inflation

The MultiZone mesh method provides automatic decomposition of geometry into mapped (sweepable) regions and free regions. When the MultiZone mesh method is selected, all regions are meshed with a pure hexahedral mesh if possible.

Ansys Meshing – Refinement

Refinement controls specify the maximum number of times you want an initial mesh to be refined.

Ansys Meshing | Inflation

Ansys Meshing | Inflation

Source: Ansys You can set the Use Automatic Inflation control so that inflation boundaries are selected automatically depending on whether or not they are members of Named Selections groups. The following options are available: None Program Controlled All Faces in...

Ansys Meshing – Keyframe Animation

Ansys Meshing – Keyframe Animation

Source: Ansys You can make animations based on keyframes. Keyframes define the start and endpoints of each section of animation. Keyframes are linked together by drawing a number of intermediate frames, the number of which is set by the # of Frames field in the...

Ansys Meshing – Match Control

Ansys Meshing – Match Control

Source: Ansys The Match Control matches the mesh on two or more faces or edges in a model. The Meshing application provides two types of match controls—cyclic and arbitrary. The Match Control is supported for the following mesh methods: Volume Meshing: Sweep Patch...

Ansys DesignModeler Tutorials

Ansys DesignModeler – Import from SOLIDWORKS to DesignModeler

Some import types (ACIS and AutoCAD) allow you to specify the units of the imported model. Before clicking Generate, you may be able to change the model units from the Details View, depending on the type of import. Note that some model types store their units, so no Model Units property will appear when importing them.

Ansys DesignModeler – Analysis Tools

The analysis tools consist of a set of functions which allow you to measure the distance between any two entities, obtain model entity information, and detect model faults. The function supports:

Ansys DesignModeler – Fill (Volume Extract)

The Fill feature is located in the Tools Menu, and is available when the model consists of active and/or frozen bodies. The Fill feature is used to extract inverse volume or volumes enclosed within a body or a set of bodies.

Ansys DesignModeler – Blend & Chamfer

The Chamfer feature allows you to create planar transitions (or chamfer faces) across model edges. This feature can be executed on both frozen and active bodies beginning in version 11.0. Prior to version 11.0, this feature would only operate on active bodies.

Stay Up to Date With The Latest News & Updates

Help us keep growing

CFD.NINJA is financed with its own resources, if you want to support us we will be grateful.

Join Our Newsletter

Subscribe to receive emails with detailed information related to the CFD.

Follow Us

Subscribe to our social networks to receive notifications about our new tutorials

Pin It on Pinterest

Shares