CFD.NINJA – ANSYS CFD

CFD.NINJA is a group founded in 2014, since then we have been dedicated to the research and dissemination of topics related to Computational Fluid Dynamics (CFD) for which we use various CFD simulation software such as ANSYS FLUENT, ANSYS CFX, ANSYS MESHING, ANSYS ICEM CFD, OpenFoam, DesignModeler, SpaceClaim, Rocky DEM, Autodesk Inventor, Ensight, etc.
We invite you to subscribe to our youtube channel, Facebook page, Twitter and Instagram where we share monthly ANSYS CFD tutorials. Eventually, we do a giveaway for CFD books and gift cards where our subscribers participate.

 

 

More than 150 Free Tutorials using Ansys Fluent, Ansys CFX, Ansys Meshing, DesignModeler, SpaceClaim, Autodesk Inventor, ICEM CFD.

CFD.NINJA Bookstore

CFD.NINJA Tutorials

We have a large number of tutorials that we have developed over several years and we make them available to you. In many of them, you can download files, geometries, and meshes. Soon we will be uploading more tutorials for experts and beginners of ANSYS CFD. We hope you can share this website with your friends and colleagues.

Source: Ansys
Computational fluid dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. But serious CFD, the kind that provides insights to help you optimize your designs, can be out of reach unless you choose your software carefully. To get serious CFD results, you need serious software. Ansys CFD goes beyond qualitative results to deliver accurate quantitative predictions of fluid interactions and trade-offs. These insights reveal unexpected opportunities for your product — opportunities that even experienced engineering analysts can miss.

Ansys Fluent Tutorials

Source: Ansys

Fluent software contains the broad, physical modeling capabilities needed to model flow, turbulence, heat transfer and reactions for industrial applications. These range from air flow over an aircraft wing to combustion in a furnace, from bubble columns to oil platforms, from blood flow to semiconductor manufacturing and from clean room design to wastewater treatment plants. Fluent spans an expansive range, including special models, with capabilities to model in-cylinder combustion, aero-acoustics, turbomachinery and multiphase systems.

Ansys Fluent Tutorial | Modeling Species Transport and Gaseous Combustion

In this tutorial, you will learn how to simulate Species transport and gaseous combustion using Ansys Fluent. You can do this tutorial with Ansys student version. Please visit our website www.cfd.ninja for more information.

Ansys Fluent – Import Pressure to Ansys Mechanical (FSI)

Fluid-structure interaction (FSI) is the multiphysics study of how fluids and structures interact. The fluid flow may exert pressure and/or thermal loads on the structure. These loads may cause structural deformation significant enough to change the fluid flow itself. Undesired effects in your product may increase as the level of the fluid-structure interaction increases.

Ansys Fluent – NACA Airfoil 4412

During the late 1920s and into the 1930s, the NACA developed a series of thoroughly tested airfoils and devised a numerical designation for each airfoil — a four digit number that represented the airfoil section’s critical geometric properties.

Ansys Fluent – Multiphase Flow (Free surface)

Chances are that your fluids simulation includes multiphase flows like boiling, cavitation, dispersed multiphase flows, immiscible flows and flows with particulates. Ansys CFD provides the widest range of sophisticated turbulence and physical models to accurately simulate the toughest challenges so you can confidently predict your product’s performance.

Ansys CFX Tutorials

Source: Ansys

Ansys CFX is a high-performance computational fluid dynamics (CFD) software tool that delivers reliable and accurate solutions quickly and robustly across a wide range of CFD and multiphysics applications. CFX is recognized for its outstanding accuracy, robustness and speed when simulating turbomachinery, such as pumps, fans, compressors and gas and hydraulic turbines.

Ansys CFX – Porous Medium

A porous medium is a solid with voids distributed more or less uniformly throughout the bulk of the body.

The basic characteristic of this medium is porosity. The bulk porosity Π of a material is defined as the ratio of void volume Vv to body volume V0, Π = Vv/V0. Since the remaining portion Vs of the total volume of the material is in the form of a solid “skeleton”, then

Ansys CFX – Heat Exchanger (Shell & Tubes)

A heat exchanger is a device used to transfer heat between two or more fluids. The fluids can be single or two phase and, depending on the exchanger type, may be separated or in direct contact.

Ansys CFX – Import Pressure to Ansys Mechanical (FSI)

Fluid-structure interaction (FSI) is the multiphysics study of how fluids and structures interact. The fluid flow may exert pressure and/or thermal loads on the structure. These loads may cause structural deformation significant enough to change the fluid flow itself.

Ansys CFX – Heat Transfer Solid/Solid

Source: brighthubengineering Heat transfer is the process of transfer of heat from high temperature reservoir to low temperature reservoir. In terms of the thermodynamic system, heat transfer is the movement of heat across the boundary of the system due to temperature...
Ansys CFX – NACA 4412 (Structured Mesh)

Ansys CFX – NACA 4412 (Structured Mesh)

Source: NASA The NACA four-digit wing sections define the profile by:[1] First digit describing maximum camber as percentage of the chord. Second digit describing the distance of maximum camber from the airfoil leading edge in tenths of the chord. Last two digits...

OpenFOAM vs ANSYS CFX

OpenFOAM vs ANSYS CFX

Source: CFD Direct OpenFOAM is the free, open source CFD software developed primarily by OpenCFD Ltd since 2004. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of...

Ansys Meshing Tutorials

Source: Ansys

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation. Furthermore, since meshing typically consumes a significant portion of the time it takes to get simulation results, the better and more automated the meshing tools, the faster and more accurate the solution.

Ansys provides general purpose, high-performance, automated, intelligent meshing software which produces the most appropriate mesh for accurate, efficient multiphysics solutions — from easy, automatic meshing to highly crafted mesh. Methods available cover the meshing spectrum of high-order to linear elements and fast tetrahedral and polyhedral to high-quality hexahedral and Mosaic. Smart defaults are built into the software to make meshing a painless and intuitive task delivering the required resolution to capture solution gradients properly for dependable results.

Ansys Meshing – How to select internal walls?

For solid models, meshing technologies from ANSYS provide robust, well-shaped quadratic tetrahedral meshing on even the most complicated geometries.

Ansys Meshing – Section Plane

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation.

Ansys Meshing – Sphere of Influence

The Sphere of Influence option is available in the Type field after you select an entity such as a body, face, edge, or vertex.

If the Sphere of Influence is scoped to a body or vertex, the Sphere of Influence affects the entire body regardless of sizing options being used.

Ansys Meshing – Refinement

Refinement controls specify the maximum number of times you want an initial mesh to be refined.

Ansys Meshing | Inflation

Ansys Meshing | Inflation

Source: Ansys You can set the Use Automatic Inflation control so that inflation boundaries are selected automatically depending on whether or not they are members of Named Selections groups. The following options are available: None Program Controlled All Faces in...

Ansys Meshing – Keyframe Animation

Ansys Meshing – Keyframe Animation

Source: Ansys You can make animations based on keyframes. Keyframes define the start and endpoints of each section of animation. Keyframes are linked together by drawing a number of intermediate frames, the number of which is set by the # of Frames field in the...

Ansys Meshing – Match Control

Ansys Meshing – Match Control

Source: Ansys The Match Control matches the mesh on two or more faces or edges in a model. The Meshing application provides two types of match controls—cyclic and arbitrary. The Match Control is supported for the following mesh methods: Volume Meshing: Sweep Patch...

Ansys DesignModeler Tutorials

Ansys DesignModeler – Imprint Face

Similar to Slice, Imprint Faces imprints curves onto the faces of active bodies in the model. The bodies themselves are not split into multiple pieces. It is available whenever active bodies are present.

Ansys DesignModeler – Fill (Volume Extract)

The Fill feature is located in the Tools Menu, and is available when the model consists of active and/or frozen bodies. The Fill feature is used to extract inverse volume or volumes enclosed within a body or a set of bodies.

Ansys DesignModeler – Projection

The Projection feature allows you to project points on edges/faces and edges on faces/bodies. This feature can be executed on both frozen and active bodies.

Ansys DesignModeler – Analysis Tools

The analysis tools consist of a set of functions which allow you to measure the distance between any two entities, obtain model entity information, and detect model faults. The function supports:

Stay Up to Date With The Latest News & Updates

Help us keep growing

CFD.NINJA is financed with its own resources, if you want to support us we will be grateful.

Join Our Newsletter

Subscribe to receive emails with detailed information related to the CFD.

Follow Us

Subscribe to our social networks to receive notifications about our new tutorials

Pin It on Pinterest

Shares