
Bookstore

Source: NASA
A nozzle is a relatively simple device, just a specially shaped tube through which hot gases flow. Ramjets and rockets typically use a fixed convergent section followed by a fixed divergent section for the design of the nozzle. This nozzle configuration is called a convergent-divergent, or CD, nozzle. In a CD nozzle, the hot exhaust leaves the combustion chamber and converges down to the minimum area, or throat, of the nozzle. The throat size is chosen to choke the flow and set the mass flow rate through the system. The flow in the throat is sonic which means the Mach number is equal to one in the throat. Downstream of the throat, the geometry diverges and the flow is isentropically expanded to a supersonic Mach number that depends on the area ratio of the exit to the throat. The expansion of a supersonic flow causes the static pressure and temperature to decrease from the throat to the exit, so the amount of the expansion also determines the exit pressure and temperature. The exit temperature determines the exit speed of sound, which determines the exit velocity. The exit velocity, pressure, and mass flow through the nozzle determines the amount of thrust produced by the nozzle.
In this tutorial you will learn to simulate a CD Nozzle using ANSYS Fluent. First, we will import the points and then we will generate the mesh using a structured mesh in Ansys Meshing. You can download the file in the following link.

Ansys CFX Tutorial | Flow through Porous Media
In this tutorial you will learn how to simulate a Flow through Porous Media using Ansys CFX.

Ansys CFX – NACA 4412 (Structured Mesh)
The NACA four-digit wing sections define the profile by:
First digit describing maximum camber as percentage of the chord.
Second digit describing the distance of maximum camber from the airfoil leading edge in tenths of the chord.
Related Articles
Ansys Fluent | Hydraulic Jump
Free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids, for example, liquid water and the air in the Earth's atmosphere. Unlike liquids, gases cannot form a free surface on their...
Ansys Fluent | Blower | Mesh Motion (Unsteady)
In this tutorial, you will learn how to simulate a blower (unsteady) using Mesh Motion with Ansys Fluent. Please download the mesh.
Ansys Fluent Tutorial – Blower
In this tutorial you will learn how to simulate a Blowe using Ansys Fluent through multiple reference frame.
Stay Up to Date With The Latest News & Updates
Help us keep growing
CFD.NINJA is financed with its own resources, if you want to support us we will be grateful.
Join Our Newsletter
Subscribe to receive emails with detailed information related to the CFD.
Follow Us
Subscribe to our social networks to receive notifications about our new tutorials