Select Page
Ansys CFX – NACA 0012 with Angle of Attack (AOA)

#### Bookstore

Source: NASA

During the late 1920s and into the 1930s, the NACA developed a series of thoroughly tested airfoils and devised a numerical designation for each airfoil — a four digit number that represented the airfoil section’s critical geometric properties. By 1929, Langley had developed this system to the point where the numbering system was complemented by an airfoil cross-section, and the complete catalog of 78 airfoils appeared in the NACA’s annual report for 1933. Engineers could quickly see the peculiarities of each airfoil shape, and the numerical designator (“NACA 2415,” for instance) specified camber lines, maximum thickness, and special nose features. These figures and shapes transmitted the sort of information to engineers that allowed them to select specific airfoils for desired performance characteristics of specific aircraft.

In this tutorial you will learn to simulate a NACA Airfoil (0012) with Angle of Attack (AOA) using ANSYS CFX. First, we will import the points of the NACA profile and then we will generate the mesh using an unstructured mesh in Ansys Meshing. You can download the file in the following link.

## Ansys CFX Tutorial | Flow through Porous Media

In this tutorial you will learn how to simulate a Flow through Porous Media using Ansys CFX.

## Ansys Fluent Tutorial | Heatsink

In this tutorial, you will learn how to simulate a Heatsink using Ansys Fluent. In this first video, you will see how to create the geometry and the mesh using DesignModeler, Ansys Meshing and Ansys Fluent.

## Ansys Fluent | Hydraulic Jump

Free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids, for example, liquid water and the air in the Earth's atmosphere. Unlike liquids, gases cannot form a free surface on their...

## Stay Up to Date With The Latest News & Updates

### Help us keep growing

CFD.NINJA is financed with its own resources, if you want to support us we will be grateful.

Subscribe to receive emails with detailed information related to the CFD.