Follow on Facebook

ANSYS FLUENT – Cavitation Centrifugal Pump

Download File: Centrifugal Pump-Cavitation Fluent

Download Zip: Centrifugal Pump-Cavitation Fluent

Source: brighthubengineering
Cavitation is formation of vapor bubbles in the liquid flowing through any Hydraulic Turbine. Cavitation occurs when the static pressure of the liquid falls below its vapor pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines

Causes of Cavitation
The liquid enters hydraulic turbines at high pressure; this pressure is a combination of static and dynamic components. Dynamic pressure of the liquid is by the virtue of flow velocity and the other component, static pressure, is the actual fluid pressure which the fluid applies and which is acted upon it. Static pressure governs the process of vapor bubble formation or boiling. Thus, Cavitation can occur near the fast moving blades of the turbine where local dynamic head increases due to action of blades which causes static pressure to fall. Cavitation also occurs at the exit of the turbine as the liquid has lost major part of its pressure heads and any increase in dynamic head will lead to fall in static pressure causing Cavitation.

Detrimental Effects of Cavitation
The formation of vapor bubbles in cavitation is not a major problem in itself but the collapse of these bubbles generates pressure waves, which can be of very high frequencies, causing damage to the machinery. The bubbles collapsing near the machine surface are more damaging and cause erosion on the surfaces called as cavitation erosion. The collapses of smaller bubbles create higher frequency waves than larger bubbles. So, smaller bubbles are more detrimental to the hydraulic machines.

Smaller bubbles may be more detrimental to the hydraulic machine body but they do not cause any significant reduction in the efficiency of the machine. With further decrease in static pressure more number of bubbles is formed and their size also increases. These bubbles coalesce with each other to form larger bubbles and eventually pockets of vapor. This disturbs the liquid flow and causes flow separation which reduces the machine performance sharply. Cavitation is an important factor to be considered while designing Hydraulic Turbines.

Readers Comments (9)

  1. Thinking like that shows an expert at work

  2. thanks for the info

  3. I’ve discovered plenty of helpful information on your website this page in particular. Thanks for sharing.

  4. Many thanks for helping people get the info they need. Good stuff as always. Keep up the good work!!!

  5. Good post, i like it so much.I was very lucky to discover your website. There’s a lot of useful info!

  6. it’s my very first time visiting your website and I am very fascinated. Many thanks for sharing and keep up 😉

  7. Thank you for helping people find the information they need. Great stuff as always. Keep up the great work!!!


Leave a comment

Your email address will not be published.