Ansys Fluent – Elbow 2D (Steady & Transient Simulation)

Written by cfd.ninja

March 22, 2020

Bookstore

Source: hardhatengineer

Pipe Fittings are Piping component that helps in Changes the direction of the flow such as elbows, tees. Changes the size of the pipe such as reducers, reducing tees. Connect different components such as couplings and stop the flows such as Caps.

There are different types of pipe fitting used in piping. Pipe Fittings used in piping work are mainly Elbow, Tee, Reducer, Union, Coupling, Cross, Cap, Swage Nipple, Plug, Bush, Expansion Joint, Adapters, Olet (Weldolet, Sockolet, Elbowlet, Thredolet, Nipolet, Letrolet, Swepolet), Steam Traps, Long Radius Bend, Flanges and Valve.

Pipe Elbow

The Elbow is used more than any other pipe fittings. It Provides flexibility to change the pipe direction. Elbow mainly available in two standard types 90° and 45°. However, it Can be cut to any other degree. Elbows are available in two radius types, Short radius (1D) and Long radius (1.5D).

Elbow Pipe

In this tutorial, we will simulate an Elbow 2D in the Steady and Transient state. First, we will use SpaceClaim to creating the geometry in 2D and then we will use Ansys Meshing and Ansys Fluent. You can download the geometr and mesh from this link.

Tutorial: NACA Airfoil 4412 using ANSYS Fluent.

Related Articles

Ansys Fluent | Flow Through Porous Media

Ansys Fluent | Flow Through Porous Media

In this tutorial, you will learn how to simulate a porous media using Ansys Fluent. In the first part, you can create the geometry and the mesh and the second part Ansys Fluent setup.

Ansys Fluent | Heat Transfer between plates

Ansys Fluent | Heat Transfer between plates

In this tutorial, you will learn how simulate heat transfer between plates with different solid materials. In addition to this, you will learn how to create an interface using Ansys Fluent.

Stay Up to Date With The Latest News & Updates

Help us keep growing

CFD.NINJA is financed with its own resources, if you want to support us we will be grateful.

Join Our Newsletter

Subscribe to receive emails with detailed information related to the CFD.

Follow Us

Subscribe to our social networks to receive notifications about our new tutorials

Pin It on Pinterest

Shares

Share This

Share this post with your friends!