Ansys Fluent – Heat Exchanger (Shell and Tubes)

Written by cfd.ninja

March 10, 2020

Bookstore

Source: Thermopedia

A heat exchanger is a device used to transfer heat between two or more fluids. The fluids can be single or two phase and, depending on the exchanger type, may be separated or in direct contact. Devices involving energy sources such as nuclear fuel pins or fired heaters are not normally regarded as heat exchangers although many of the principles involved in their design are the same.

In order to discuss heat exchangers it is necessary to provide some form of categorization. There are two approaches that are normally taken. The first considers the flow configuration within the heat exchanger, while the second is based on the classification of equipment type primarily by construction. Both are considered here.

Classification of Heat Exchangers by Flow Configuration

There are four basic flow configurations:

  • Counter Flow

  • Cocurrent Flow

  • Crossflow

  • Hybrids such as Cross Counterflow and Multi Pass Flow

In this tutorial you will learn to simulate a Heat Exchanger (Shell and Tubes) using Ansys Fluent. You can download the mesh from this link.

We share the same tutorial using ANSYS CFX.

Related Articles

Ansys Fluent | Flow Through Porous Media

Ansys Fluent | Flow Through Porous Media

In this tutorial, you will learn how to simulate a porous media using Ansys Fluent. In the first part, you can create the geometry and the mesh and the second part Ansys Fluent setup.

Ansys Fluent | Heat Transfer between plates

Ansys Fluent | Heat Transfer between plates

In this tutorial, you will learn how simulate heat transfer between plates with different solid materials. In addition to this, you will learn how to create an interface using Ansys Fluent.

Stay Up to Date With The Latest News & Updates

Help us keep growing

CFD.NINJA is financed with its own resources, if you want to support us we will be grateful.

Join Our Newsletter

Subscribe to receive emails with detailed information related to the CFD.

Follow Us

Subscribe to our social networks to receive notifications about our new tutorials

Pin It on Pinterest

Shares

Share This

Share this post with your friends!