Ansys Fluent – UDF (User-Defined Function) Temperature Profile

Written by

March 10, 2020


A user-defined function, or UDF, is a function that you program that can be dynamically loaded with the ANSYS FLUENT solver to enhance the standard features of the code. For example, you can use a UDF to define your own boundary conditions, material properties, and source terms for your flow regime, as well as specify customized model parameters (e.g., DPM, multiphase models), initialize a solution, or enhance postprocessing.

UDFs are written in the C programming language using any text editor and the source code file is saved with a .c extension (e.g., myudf.c). One source file can contain a single UDF or multiple UDFs, and you can define multiple source files.

Every UDF must contain the udf.h file inclusion directive #include "udf.h") at the beginning of the source code file, which allows definitions of DEFINE macros and other ANSYS FLUENT-provided macros and functions to be included during the compilation process.

Source files containing UDFs can be either interpreted or compiled in ANSYS FLUENT. For interpreted UDFs, source files are interpreted and loaded directly at runtime, in a single-step process. For compiled UDFs, the process involves two separate steps. A shared object code library is first built and then it is loaded into ANSYS FLUENT.

In this tutorial you will learn to compile UDF (User-Defined Function)  using Ansys Fluent. In this case, we have a UDF about temperature profile. You can download the file from this link.

Tutorial: Error UDF “nmake” using ANSYS Fluent.

Related Articles

Ansys Fluent Tutorial | Heatsink

Ansys Fluent Tutorial | Heatsink

In this tutorial, you will learn how to simulate a Heatsink using Ansys Fluent. In this first video, you will see how to create the geometry and the mesh using DesignModeler, Ansys Meshing and Ansys Fluent.

Ansys Fluent | Hydraulic Jump

Ansys Fluent | Hydraulic Jump

Free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids, for example, liquid water and the air in the Earth's atmosphere. Unlike liquids, gases cannot form a free surface on their...

Stay Up to Date With The Latest News & Updates

Help us keep growing

CFD.NINJA is financed with its own resources, if you want to support us we will be grateful.

Join Our Newsletter

Subscribe to receive emails with detailed information related to the CFD.

Follow Us

Subscribe to our social networks to receive notifications about our new tutorials

Pin It on Pinterest


Share This

Share this post with your friends!

Advertisment ad adsense adlogger