With your help we can maintain our CFD.NINJA website and create more content related to Computational Fluid Dynamics (CFD).

Thank you so much!

CFD.NINJA – ANSYS CFD

CFD.NINJA is a group founded in 2014, since then we have been dedicated to the research and dissemination of topics related to Computational Fluid Dynamics (CFD) for which we use various CFD simulation software such as ANSYS FLUENT, ANSYS CFX, ANSYS MESHING, ANSYS ICEM CFD, OpenFoam, DesignModeler, SpaceClaim, Rocky DEM, Autodesk Inventor, Ensight, etc.
We invite you to subscribe to our youtube channel, Facebook page, Twitter and Instagram where we share monthly ANSYS CFD tutorials. Eventually, we do a giveaway for CFD books and gift cards where our subscribers participate.

 

 

More than 150 Free Tutorials using Ansys Fluent, Ansys CFX, Ansys Meshing, DesignModeler, SpaceClaim, Autodesk Inventor, ICEM CFD.

CFD.NINJA Bookstore

CFD.NINJA Tutorials

We have a large number of tutorials that we have developed over several years and we make them available to you. In many of them, you can download files, geometries, and meshes. Soon we will be uploading more tutorials for experts and beginners of ANSYS CFD. We hope you can share this website with your friends and colleagues.

Source: Ansys
Computational fluid dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. But serious CFD, the kind that provides insights to help you optimize your designs, can be out of reach unless you choose your software carefully. To get serious CFD results, you need serious software. Ansys CFD goes beyond qualitative results to deliver accurate quantitative predictions of fluid interactions and trade-offs. These insights reveal unexpected opportunities for your product — opportunities that even experienced engineering analysts can miss.

Ansys Fluent Tutorials

Source: Ansys

Fluent software contains the broad, physical modeling capabilities needed to model flow, turbulence, heat transfer and reactions for industrial applications. These range from air flow over an aircraft wing to combustion in a furnace, from bubble columns to oil platforms, from blood flow to semiconductor manufacturing and from clean room design to wastewater treatment plants. Fluent spans an expansive range, including special models, with capabilities to model in-cylinder combustion, aero-acoustics, turbomachinery and multiphase systems.

Ansys Fluent | How to Plot Graph? | XY Plot

In this tutorial, you will learn how to generate an XY Plot and save its picture (Post-Processing) using Ansys Fluent.

Ansys Fluent – How to add new material?

By default, your local materials list will include a single fluid material (air) and a single solid material (aluminum). If the fluid involved in your problem is air, you can use the default properties for air or modify the properties.

Ansys Fluent – Centrifugal Pump

Source: MichaelSmith A centrifugal pump is a mechanical device designed to move a fluid by means of the transfer of rotational energy from one or more driven rotors, called impellers.  Fluid enters the rapidly rotating impeller along its axis and is cast out by...

Ansys Fluent Tutorial | Modeling Species Transport and Gaseous Combustion

In this tutorial, you will learn how to simulate Species transport and gaseous combustion using Ansys Fluent. You can do this tutorial with Ansys student version. Please visit our website www.cfd.ninja for more information.

Ansys CFX Tutorials

Source: Ansys

Ansys CFX is a high-performance computational fluid dynamics (CFD) software tool that delivers reliable and accurate solutions quickly and robustly across a wide range of CFD and multiphysics applications. CFX is recognized for its outstanding accuracy, robustness and speed when simulating turbomachinery, such as pumps, fans, compressors and gas and hydraulic turbines.

Ansys CFX – How to add new material?

By default, your local materials list will include a single fluid material (air) and a single solid material (aluminum). If the fluid involved in your problem is air, you can use the default properties for air or modify the properties.

Ansys CFX – Centrifugal Pump & Cavitation

A centrifugal pump is a mechanical device designed to move a fluid by means of the transfer of rotational energy from one or more driven rotors, called impellers. Fluid enters the rapidly rotating impeller along its axis and is cast out by centrifugal force along its circumference through the impeller’s vane tips.

Ansys CFX – Heat Exchanger (Shell & Tubes)

A heat exchanger is a device used to transfer heat between two or more fluids. The fluids can be single or two phase and, depending on the exchanger type, may be separated or in direct contact.

Ansys CFX – Compressible Flow

Compressibility effects are encountered in gas flows at high velocity and/or in which there are large pressure variations. When the flow velocity approaches or exceeds the speed of sound of the gas or when the pressure change in the system ( $\Delta p /p$) is large, the variation of the gas density with pressure has a significant impact on the flow velocity, pressure, and temperature.

Ansys CFX – Compressible Flow

Ansys CFX – Compressible Flow

Source: Ansys Compressibility effects are encountered in gas flows at high velocity and/or in which there are large pressure variations. When the flow velocity approaches or exceeds the speed of sound of the gas or when the pressure change in the system ( ) is large,...

Ansys CFX – Heat Transfer through a Pipe

Ansys CFX – Heat Transfer through a Pipe

Source: NASA Thermodynamics is a branch of physics that deals with the energy and work of a system. Thermodynamics deals only with the large scale response of a system that we can observe and measure in experiments. In aerodynamics, we are most interested in the...

Ansys Meshing Tutorials

Source: Ansys

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation. Furthermore, since meshing typically consumes a significant portion of the time it takes to get simulation results, the better and more automated the meshing tools, the faster and more accurate the solution.

Ansys provides general purpose, high-performance, automated, intelligent meshing software which produces the most appropriate mesh for accurate, efficient multiphysics solutions — from easy, automatic meshing to highly crafted mesh. Methods available cover the meshing spectrum of high-order to linear elements and fast tetrahedral and polyhedral to high-quality hexahedral and Mosaic. Smart defaults are built into the software to make meshing a painless and intuitive task delivering the required resolution to capture solution gradients properly for dependable results.

Ansys Meshing – Section Plane

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation.

Ansys Meshing – Inflation

ou can set the Use Automatic Inflation control so that inflation boundaries are selected automatically depending on whether or not they are members of Named Selections groups.

Ansys Meshing – Method

For solid models, meshing technologies from ANSYS provide robust, well-shaped quadratic tetrahedral meshing on even the most complicated geometries.

Ansys Meshing – Mesh Types (Hexa, Prism, Polyhedral)

When geometries are complex or the range of length scales of the flow is large, a triangular/tetrahedral mesh can be created with far fewer cells than the equivalent mesh consisting of quadrilateral/hexahedral elements.

Ansys Meshing – Match Control

Ansys Meshing – Match Control

Source: Ansys The Match Control matches the mesh on two or more faces or edges in a model. The Meshing application provides two types of match controls—cyclic and arbitrary. The Match Control is supported for the following mesh methods: Volume Meshing: Sweep Patch...

Ansys Meshing – Body of Influence

Ansys Meshing – Body of Influence

Source: Ansys The Body of Influence option is available in the Type field if you selected a body and Use Adaptive Sizing is set to No. Using this option, you can set one body as a source of another body (that is, a Body of Influence). The Body of Influence will...

Ansys Meshing – Sphere of Influence

Ansys Meshing – Sphere of Influence

Source: Ansys The Sphere of Influence option is available in the Type field after you select an entity such as a body, face, edge, or vertex. If the Sphere of Influence is scoped to a body or vertex, the Sphere of Influence affects the entire body regardless of sizing...

Ansys DesignModeler Tutorials

Ansys DesignModeler – Fill (Volume Extract)

The Fill feature is located in the Tools Menu, and is available when the model consists of active and/or frozen bodies. The Fill feature is used to extract inverse volume or volumes enclosed within a body or a set of bodies.

Ansys DesignModeler – Thin/Surface

The Thin/Surface feature allows you to convert solids into thin solids or surfaces. The feature can operate on both active and frozen bodies. Typically, you will select the faces to remove, and then specify a face offset that is greater than or equal to zero (>=0).

Ansys DesignModeler – Import from SOLIDWORKS to DesignModeler

Some import types (ACIS and AutoCAD) allow you to specify the units of the imported model. Before clicking Generate, you may be able to change the model units from the Details View, depending on the type of import. Note that some model types store their units, so no Model Units property will appear when importing them.

Ansys DesignModeler – Symmetry

The Symmetry feature is a tool used to define a symmetry model. The feature takes either all the bodies or selected bodies of the model as input and accepts up to three symmetry planes. You can choose either full or partial models to work with. If a full model is used, the selected symmetry planes will slice off the model and only a portion of the model will be retained.

Ansys DesignModeler – Thin/Surface

Ansys DesignModeler – Thin/Surface

Source: Ansys he Thin/Surface feature has two distinct applications: Create thin solids Simplified shelling The three selection tools are: Faces to Remove: selected faces will be removed from their bodies. Faces to Keep: selected faces will be kept, while unselected...

Pin It on Pinterest

Shares
Advertisment ad adsense adlogger